
Dynamic Multi-Keyword Ranked Searchable
Security Algorithm Using CRSA and B-Tree

Prasanna B T#1, C B Akki*2
#Department of ISE, EPCET

Associate Professor, Bengaluru, INDIA-560049
*Department of ISE, SJBIT

 Professor, Bengaluru, INDIA-560060

Abstract— With the advantage of storage as a service many
enterprises are moving their valuable data to the cloud, since it
costs less, easily scalable and can be accessed from anywhere
any time. The trust between cloud user and provider is
paramount. We use security as a parameter to establish trust.
Cryptography is one way of establishing trust. Searchable
encryption is a cryptographic method to provide security. In
literature many researchers have been working on developing
efficient searchable encryption schemes. In this paper we
explore some of the effective cryptographic techniques based
on data structures like CRSA and B-Tree to enhance the level
of security, hence trust. We tried to implement the search on
encrypted data using Azure cloud platform.

Keywords: Searchable Encryption, Multi keyword, CRSA,
B tree, Azure

I INTRODUCTION

 Cloud computing is one way of computing. Here the
computing resources are shared by many users. The
benefits of cloud can be extended from individual users to
organizations. The data storage in cloud is one among them.
The virtualization of hardware and software resources in
cloud nullifies the financial investment for owning the data
warehouse and its maintenance. Many cloud platforms like
Google Drive, iCloud, SkyDrive, Amazon S3, Dropbox and
Microsoft Azure provide storage services.

 Security and privacy concerns have been the major
challenges in cloud computing. The hardware and software
security mechanisms like firewalls etc. have been used by
cloud provider. These solutions are not sufficient to protect
data in cloud from unauthorized users because of low
degree of transparency [4]. Since the cloud user and the
cloud provider are in the different trusted domain, the
outsourced data may be exposed to the vulnerabilities [4]
[14] [5]. Thus, before storing the valuable data in cloud, the
data needs to be encrypted [2]. Data encryption assures the
data confidentiality and integrity. To preserve the data
privacy we need to design a searchable algorithm that
works on encrypted data [13].

 Many researchers have been contributing to searching
on encrypted data. The search techniques may be single
keyword search or multi keyword search [11]. In huge
database the search may result in many documents to be
matched with keywords. This causes difficulty for a cloud
user to go through all documents and have most relevant

documents. Search based on ranking is another solution,
wherein the documents are ranked based on their relevancy
to the keywords [3]. Economical searchable encryption
techniques help the cloud users especially in pay-as-you use
model. The researchers combined the rank of documents
with multiple keyword search to come up with efficient
economically viable searchable encryption techniques. In
searchable encryption related literature, computation time
and computation overhead are the two most frequently used
parameters by the researchers in the domain for analysing
the performance of their schemes. Computation time (also
called "running time") is the length of time required to
perform a computational process for example searching a
keyword, generating trapdoor etc. Computation overhead is
related to CPU utilization in terms of resource allocation
measured in time.

 In this research work, we analyse the security problems
in cloud storage and propose a solution for the same. Our
contribution can be summarized as follows:

1. For the first time, we define the problem of secure
ranked keyword search over encrypted cloud data, and
provide such an effective protocol, which fulfils the secure
ranked search functionality with no relevance score
information leakage against keyword privacy.

2. Thorough security analysis showed that our
asymmetric based ranked searchable encryption scheme
using CRSA and B-tree indeed enjoys “as-strong-as-
possible” security guarantee compared to previous
searchable symmetric encryption (SSE) schemes.

3. Extensive experimental results demonstrate the
effectiveness and efficiency of the proposed solution.

 In the remainder of this paper, the following
information is presented: in Section II, literature review in
related area is discussed. Section III describes problem
formulation. Section IV presents our proposed search
schemes. Security analysis and performance analysis are
presented in Section V. Finally, in Section VI, the paper
concludes with some suggestions for future work.

II LITERATURE SURVEY

 The encryption on data is an effective way to protect
the confidentiality of data in cloud. But when it comes to
searching, efficiency gets low. In literature many research
works are not efficient in searching specially for complex
queries. This inefficiency may lead to leakage of valuable

Prasanna B T et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (1) , 2015, 826-832

www.ijcsit.com 826

information to unauthorized peoples. Song et al, for the first
time proposed the practical symmetric searchable method
based on cryptography. In this scheme the file is encrypted
word by word. To search for a keyword user sends the
keyword with same key to the cloud. The drawback of this
scheme is that the word frequency will be revealed. Goh et
al tried to overcome the drawback of Song’s scheme by
constructing secure index table using pseudorandom
functions and unique document identifier randomized
bloom filters. Bosch et al worked on the concept given by
Goh et al. and introduced the concept of wild card searches.
The drawback of this scheme is that bloom filters may
introduce false positives. In Chang’s et al proposed scheme,
an index is built for each document. The scheme is more
secured compared to Goh’s scheme since number of words
in a file is not disclosed. The limitation of this scheme is
that it is less efficient and does not support arbitrary updates
with new words. Golle et al scheme allows multiple
keyword searches with one encrypted query. But this
scheme is not practical. Curtmola et al for the first time
proposed the concept of symmetric searchable encryption
(SSE), later on Kamara et al proposed an extended version
of SSE called dynamic SSE (DSSE), where addition and
deletion of documents can be performed in index table. All
these schemes are based on single keyword search [22] [23]
[24].

The first public key encryption with keyword search
(PEKS) was proposed by Boneh et al. The scheme suffers
from inference attack on trapdoor encryption method. Baek
et al, Rhee et al improved hardness of security of Boneh’s
scheme. Baek’s scheme introduces the concept of
conjunction of keyword search. The public key encryption
methods are computationally time consuming and complex
that makes these algorithms inefficient. In Yang et al
scheme the encrypted data is searched by individual users
using a unique key allotted to them. The scheme suffers
from key management. Boneh et al discussed functional
encryption and related to conjunctional search, range
queries and subset queries. Katz et al scheme is an updated
version of Boneh’s scheme and discussed predicate
encryption for inner products and supports both
conjunctions and disjunctions search on encrypted data [22]
[23] [24].

There are many searching techniques implemented in the
cloud. These techniques support only exact keyword search.
Using fuzzy search the exact keywords are displayed along
with similarity keywords and is analysed in [8]. This work
concentrates on solving the problems of the user who
searches the data with the help of fuzzy keyword on cloud.

Curtmola et al. [16], proposed a method where an
inverted index (implemented using linked list) having
document identifiers is maintained for each keyword. Every
node in the list stores information about the position and the
decryption key of the next node. The nodes from all
inverted indexes are encrypted with random keys and are
randomly inserted into an array. With this, by knowing
position and decryption key of the first node of an inverted
index, it is possible to find all documents which include the
corresponding keyword. To improve the efficiency of the

above scheme, top-k single keyword retrieval schemes are
proposed in the literature [17].

Much work has been done in privacy preserving multi-
keyword search on encrypted data for cloud computing
sector. In [11], a model is proposed that solves the problem
of effective secure ranked keyword search over encrypted
cloud data. Here, it proposes an existing cryptographic
primitive, order-preserving symmetric encryption (OPSE).
The disadvantages of this technique are: does not support
multi-keyword, does not include IDF (define) for the
calculation of scores, does not use advanced crypto
techniques.

S.Buyrukbilen et al [18], introduce the first method that
provides ranked results from multi-keyword searches on
public-key encrypted data. By avoiding a linear scan of the
documents and by parallelizing the computations to the
possible extent, this method reduces the computational
complexity of public key cryptosystem. The scheme
encrypts keyword information of each document in a bloom
filter [19], and hierarchically aggregate (using
homomorphic encryption) the individual indexes into a tree
structure. Client will do the query processing, and traverse
the tree in best-first manner. The query is hidden from the
server or cloud provider by using an efficient private
information retrieval (PIR) protocol [20]. In this method the
indexes are split into multiple chunks, and use several
CPUs in parallel to execute the user queries efficiently.

Wenhai Sun et al. [21], proposed a MRSE scheme that
works on similarity based ranking. Here search index is
created on the basis of term frequency and vector space.
Search index is used for multi keyword search and ranking
the search result. Search efficiency is improved by applying
tree structure on index.

The future work being multi-keyword semantic search
over the encrypted data has been represented in [6].
Considering the large number of data users and documents
in the cloud, it is necessary to allow multiple keywords in
the search request and return documents in the order of their
relevance to these keywords. Here, privacy-preserving
multi-keyword ranked search over encrypted data in cloud
computing (MRSE) is proposed where among various
multi-keyword semantics, it chooses the efficient similarity
measure of coordinate matching and hence uses the
cryptographic techniques. Therefore, it lacks integrity check
of rank order in search result and privacy in stronger threat
model. Synonym based multiple keywords ranked search
over encrypted cloud data using balanced binary tree is
proposed in [15]. Here author used symmetric encryption
method for designing searchable encryption scheme and
used b-tree for indexing.

Although many researchers across the globe have been
investigating to identify a suitable privacy preserving
technique for cloud domain, none of these solutions
guarantee 100 percent privacy. There exists a wide range of
research challenges. We therefore chose to work towards
meeting this challenge.

III PROBLEM FORMULATION

Searchable Encryption (SE) schemes maintain the
confidentiality and privacy of owner’s data by facilitating

Prasanna B T et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (1) , 2015, 826-832

www.ijcsit.com 827

searching keywords directly on encrypted data. Users can
upload their encrypted data to cloud. Later, the authorized
users can perform private keyword search on encrypted data
in cloud. Multiple domains like cryptography, indexing,
storage etc. are involved in devising efficient, secure, SE
algorithms over encrypted files. The participants of a secure
search model in a cloud, typically involves data owner, data
user and cloud server. Data owner encrypts the files and
corresponding keywords based index files by using any
known cryptographic algorithms. Both the encrypted files
and index files are uploaded to the cloud server. The
trapdoors (encrypted keywords) are used to search
encrypted files by cloud server in cloud database.

A. System Model
Our system consists of 3 entities data owner, data user

and the cloud server as shown in Figure 1.
1. Data owner encrypts the data files for securing the

data in cloud using Commutative RSA (CRSA) before
uploading into the cloud. They also define the access rights
for the user who want to access those documents. The
access right is a 2-state variable: permission granted or
permission denied. Data owner creates an index tree based
on B tree and encrypts the tree using CRSA.

2. Cloud server stores the encrypted data files and
encrypted index tree. It accepts the encrypted keywords
(trapdoor) and returns the matching data file based on their
relevance.

3. Data user can search for encrypted data files in cloud
with encrypted keywords (trapdoor). The purpose of using
encrypted keywords is that even the cloud server must not
be able to infer the contents of data files.

Figure 1: Searchable Encryption Architecture using CRSA

B. Threat Model
The threat model for our search scheme adopts “honest-

but-curious” cloud server, that is the cloud server
“honestly” follows the protocol specification, but it is
“curious” to infer and analyze data (including indexes) in
its storage and message flows received during the protocol
in order to learn additional information.

C. Design Goals
The proposed solution addresses the following

requirements
1. The search on encrypted document/file must be fully

secure and cloud server must not be able to infer the
contents of the documents in any way.

2. The search results must be ranked in order of
relevance

To enable ranked searchable encryption for effective
utilization of outsourced and encrypted cloud data under the
aforementioned model, our system design should achieve
the following security and performance guarantee.
Specifically, we have the following goals: 1) Ranked
keyword search: to explore different mechanisms for
designing effective ranked search schemes based on the
existing searchable encryption framework; 2) Security
guarantee: to prevent cloud server from learning the
plaintext of either the data files or the searched keywords,
and achieve the “as-strong-as-possible” security strength
compared to existing searchable encryption schemes; 3)
Efficiency: above goals should be achieved with minimum
communication and computation overhead.
Existing systems:

Existing searchable encryption schemes [6] [15] [38]
allow a user to securely search over encrypted data through
keywords. These techniques support multi keyword search.
The similarity measure “coordinate matching” in MRSE [6]
has some drawbacks when used to evaluate the document
ranking order. First, it takes no account of term frequency
such that any keyword appearing in a document will present
in the index vector as binary value 1 for that document,
irrespective of the number of its appearance. Obviously, it
fails to reflect the importance of a frequently appeared
keyword to the document. Second, it takes no account of
term scarcity. Usually a keyword appearing in only one
document is more important than a keyword appearing in
several ones. In addition, long documents with many terms
will be favoured by the ranking process because they are
likely to contain more terms than short documents. Hence,
due to these limitations, the heuristic ranking function,
“coordinate matching”, is not able to produce more accurate
search results. More advanced similarity measure should be
adopted from plaintext information retrieval community.
On the other hand, the search complexity of MRSE is linear
to the number of documents in the dataset, which becomes
undesirable and inefficient when a huge amount of
documents are present.
Proposed system:

For our system, we choose the B-tree as indexing data
structure to identify the match between search query and
data documents. Specially, we use inner data
correspondence, i.e., the number of query keywords
appearing in document, to evaluate the similarity of that
document to the search query. Each document is converted
to a balanced B-tree according to the keywords and
encrypted using CRSA. Whenever user wants to search,
he/she creates a trapdoor for the keywords. Our aim is to
design and analyse the performance of multiple keywords
ranked search scheme using Commutative RSA algorithm
and B-tree data structure for searchable index tree.

We designed a scheme based on secured ranked multiple
keyword search over encrypted cloud data using CRSA.
Further, we analysed its performance over B-tree based
searchable index tree. In [6] [38], authors have studied the
performance of RSA algorithm on B tree. We have used
Microsoft’s Azure platform to emulate the proposed system
and to study its performance.

Prasanna B T et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (1) , 2015, 826-832

www.ijcsit.com 828

D. Preliminaries

Commutative Encryption (CRSA): The RSA
cryptosystem is one of the optimum public key
cryptography approaches. However, its overall robustness
gets limited due to one way encryption and majority of
existing RSA schemes suffer from reorder issues.
Therefore, in order to make this system least complicated
and more efficient, an approach called Commutative RSA
has been proposed. In this scheme, the order in which
encryption has been done would not affect the decryption if
it is done in the same order. Encryption is the standard
method for making a communication private. With the
many cryptographic approaches, our system follows the
commutative RSA algorithm. The mathematical scheme for
performing this encryption is described by a pseudo
algorithm presented below.

Let us consider two prime numbers and

 initialized amongst all the group members.

Let and represent the group members required to
communicate over the documents. To compute the
encryption keys and decryption key pairs of the
commutative RSA algorithm the parameters

and are computed using the
following

From the above equations it is clear that

 and

 for and .
The encryption key pair of and are represented as

(and

 is to be obtained.
The is obtained by randomly selecting

numbers such that it is a co-prime of or in
other terms

Where represents the greatest common

divisor function between two variables and .
The decryption key pair of and is represented by

 and

 and the parameter

 is computed based on the following equation

Let represent the encrypted data . The encryption

operation is defined as follows

The commutative RSA decryption operation on the

encrypted data is defined

B- Tree: A B-tree is a data structure as shown in Figure

2. The tree contains index nodes and leaf nodes. All leaf
nodes are at the same level (same depth). Each index nodes

contain keywords and pointers. Each node except root node
in a B-tree with order n must contain keys between n to 2n
keys. Each node also contains (number of keys + 1)
pointers to its child nodes. If the root node is an index node
then it must have at least 2 children. The insertion, deletion,
search operations takes only logarithmic time.

Figure 2: B tree data structure

IV SEARCHABLE ENCRYPTION SCHEME

To design an efficient multi-keyword searchable
encryption scheme based on public key cryptography, we
included the following modules.

Encryption Module: By using CRSA, data in a file can be
updated dynamically without affecting the overall
performance of searching on B-tree. If the encrypted
indexed data is modified, re-indexing for the whole data is
not needed. Similarly there is no need of re-encrypting the
files in the database whenever the file is modified. This is a
desirable feature as it reduces the computation time.

Data owner first generates secret and public key pair
(EK, DK) using a standard public-key encryption scheme ie
CRSA. Then owner makes the public key DK public and
keeps the secret keys EK private. Documents {D | D1,
D2,…, Dn} are encrypted using EK resulting in a
ciphertexts {C | C1,C2,….Cn}. The generated C is stored
in cloud database.

The constructed index based on B tree is also encrypted
using CRSA, i.e each derived keywords {W|
w1,w2,….wn}from a document is indexed in a tree and
encrypted using CRSA. This results in a set of encryptions
{e| e1,e2,..en} where each ej (for) is defined
as E_wj = CRSA_Enc (EK, wj), where E_wj denotes
encrypted keyword.

Index Module: Index structures for huge datasets cannot be
stored in main memory. Disk is a possible alternative.
Storing it on disk requires different approach. The solution
is to use more branches to reduce the height of the tree. For
this we used B-tree data structure for each document. B-tree
is a data structure of order n. The nodes are filled from n to
2n keys. Nodes are always at least half full of keys. The
keys are within each node. A list of pointers is inserted
between keys. These pointers help to navigate through tree.
In general, a node with k keys has (k+1) pointers.

The design for creating and querying the index tree can
be given by ALGORITHM-1, ALGORITHM-2 and
ALGORITHM-3. ALGORITHM-1 and ALGORITHM-2
are used to create an index tree and ALGORITHM-3
describes how search can be performed on index tree.

Prasanna B T et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (1) , 2015, 826-832

www.ijcsit.com 829

ALGORITHM-1
Btree_insert (root, Key, Object_value)
Input: root pageID of a B-tree, the key and the value of

an object.
//Inserts when Object_value doesn’t exist in a B-tree
1. NODE = Disk_Read (root).
2. if NODE_x is full
 (a) y = Allocate_Page(), z = Allocate_Page().
 (b) Locate the middle object o stored in NODE_x.
 Move the objects to the left of object o into

NODE_y.
 Move the objects to the right of o into NODE_z.
 If NODE_x is an index page,
 Then move the child pointers of NODE_x

accordingly.
 (c) NODE_ x: child [1] = NODE_y, NODE_x:

child [2] = NODE_z.
 (d) Disk_Write (NODE_x); Disk_Write

(NODE_y); Disk_Write (NODE_z).
3. end if
4. Insert_Not_Full (NODE_x; Key; Object_value).

ALGORITHM-2

Insert_Not_Full (NODE_x, key, Object_value)
Input: an in-memory page NODE_x of a B-tree, the key

and the value Object_value of a new object.
// This algorithm inserts when page of NODE_ x is not

full.
// Insert the new Object_value into the sub-tree rooted by

NODE_x.
1. if NODE_ x is a leaf page
 (a) Insert the new Object_value into NODE_x,

keeping Object_values in sorted order.
 (b) Disk_Write (NODE_x).
2. else
 (a) Find the child pointer NODE_x: child[i] whose

key range contains Key.
 (b) NODE_w = Disk_Read (NODE_x: child [i]).
 (c) if NODE_w is full
 NODE_y = Allocate_Page ().
 Locate the middle object o stored in NODE_w.

Move the objects to the right of o into NODE_y.
 If NODE_w is an index page, move the child

pointers accordingly.
 Move o into NODE_x. Add a right child pointer in

NODE_x pointing to NODE_y
 Disk_Write (NODE_x); Disk_Write (NODE_y);

Disk_Write (NODE_w).
 If (Key < o. key), call Insert_Not_Full(NODE_w;

KEY; Object_value);
 else, call

Insert_Not_Full(NODE_y; Key; Object_value).
 (d) else Insert_Not_Full(NODE_w; Key;

Object_value).
 (e) end if
3. end if

The Disk_Read in ALGORITHM-1 reads the

corresponding page from disk to memory and returns the
location in memory that gets stored in node NODE_x. If the

node NODE_x is full, allocate memory for 2 nodes and
store the corresponding addresses in NODE_y and
NODE_z. Find the middle object stored in NODE_x. Split
the node NODE_x by moving the values to the left of
middle object o in to NODE_y and right values of middle
object o to NODE_z. If NODE_x is index page then move
the pointers accordingly i.e. NODE_x: child [1] =
NODE_y, NODE_x: child [2]=NODE_z. The NODE_x is
promoted to higher level. This increases the height of the
tree. Write all the values back to disk from memory by
using Disk_Write operation. Else if NODE_x is not full
then call Insert_Not_Full function. Insert_Not_Full function
finds the path from root to leaf, and inserts the
Object_value in to the leaf. Using the key range of the child
pointer where the key of new object exists, the algorithm
follows the pointer. The algorithm loops recursively on
each of those nodes which are not full along the path till
leaf level. The Object is inserted at the leaf level.

Search Module: Searching a B-tree is like searching a
binary tree. Here instead of making a binary branching
decision at each node, we make a multiway branching
decision according to the number of the node's children.

Let’s suppose cloud server has received n encrypted
documents of this form, so that it now holds a set of
encrypted documents {C|c1,C2,…,Cn}. Now, if user wants
to retrieve the documents with keyword , he just needs to
generate a secret trapdoor encrypted using CRSA i.e
Enc_CRSA (w1, w2, ..). The trapdoor containing the
encrypted keywords is sent as token to the server. The
server then uses this trapdoor to match the encrypted
keywords in index tree node. If match found stores the
pointer to that document in encrypted database. The search
continues for other encrypted keywords. The following
ALGORITHM-3 gives the stepwise information about how
search will be done on B-Tree.

ALGORITHM-3

Search_Query (root, trapdoor)
Input: root, trapdoor containing keyword to be searched.
Output: pointer to the documents containing the

keywords; NULL if non-exist.
1. NODE_x = Disk_Read (root).
2. if NODE_x is an index node
 (a) If there is an object o in NODE_x such that o:

key = keyword, return o: value.
 (b) Find the child pointer x: child [i] whose key

range contains key.
 (c) Return Search_Query(NODE_x:child[i], key).
3. else If there is an object o in NODE_x such that o:key

= keyword, return o:value.
 Otherwise, return NULL.
4.end if.

The ALGORITHM-3 takes trapdoor and root as input

and searches for the keywords match in cloud database. The
Disk_Read reads the corresponding root page from disk to
memory and returns the location in memory that gets stored
in node NODE_x. If NODE_x is index node then trapdoor
is checked to see for keyword match. If found returns the

Prasanna B T et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (1) , 2015, 826-832

www.ijcsit.com 830

corresponding document pointed by the node. Otherwise
based on keyword, search will move to the child of
NODE_x using pointers. The search continues recursively.
Otherwise if NODE_x represents leaf then return the
pointer to document if search succeeds otherwise NULL.

Ranking Module: In large databases, it is quite likely that
the keyword might be matching with more number of
documents. It is cumbersome for a user to decrypt and go
through all the documents. Therefore there is a need for
ranking the documents based on their relevance to the
keywords. In our scheme we used (TF * IDF) to rank the
documents. TF is the term frequency i.e. occurrence of
keywords in a document and IDF is inverse document
frequency i.e. total number of documents divided by
number of documents containing the keyword. Similarity
measure is used to find the rank based on relevance. For
this, we maintain two vectors one for storing TF weight and
other to store IDF weight.

Platform Used: Microsoft Azure is a cloud service
provider. It provides storage as a service to the customers.
Azure architecture contains roles, i.e. the worker role and
the web role as shown in Figure 3. The web role is used for
designing UI, whereas worker role is used to run
background asynchronous applications. The workers in the
B-tree provide search encryption services which support the
multi-keyword search application. The workers are defined
as where is

search provided by the worker. The encrypted index tree
is created by tree builder function using encrypted keyword
contents (worker A). Cloud users (web role) enter the
keywords for search. The B-tree based tree search algorithm
i.e. searches for the encrypted keywords in index tree. The
search results are obtained using query on index tree and
using tree search algorithm. Relevance score for ranking the
search results is calculated using search algorithm, the
index tree and database (worker B) as explained above in
rank module. The system architecture of the azure cloud
search over an encrypted data by the worker and web role is
shown in Figure 3.

Figure 3: Architecture of searchable encryption scheme in
Azure

V PERFORMANCE ANALYSIS

The security of the designed system is provided by using
CRSA. As long as private key (encrypted) is kept secret the
cloud provider cannot deduce index tree or documents set.
Since trapdoor is also encrypted using CRSA, the provider
cannot make out the keywords inside the trapdoor
maintaining the confidentiality at index and query level.
The documents in cloud storage are also protected, since
documents are encrypted using CRSA. Without having the
decryption key it is highly hard to decrypt the documents
thus provides security at storage level.

To be useful and usable, databases must support
operations, such as search, deletion and insertion of data.
For large organizations the databases are huge in size and
cannot be maintained entirely in memory. By using
balanced B-trees to construct the index for the data we can
improve the search efficiency. B-tree minimizes the disk
I/O (disk read and disk write) by copying a block of data
(page) containing many records at a time into memory. This
in turn improves the search efficiency. Asymptotically,
Searching an unsorted database without indexing will have
a worst case running time of O(n), where n represents the
number of keywords. If the same data is indexed with a B-
Tree, the same search operation will run in logarithmic time
i.e O(log n).
Result Analysis: The privacy preserved multi-keyword
search based on the encrypted cloud data has been
designed. The system model presented has been developed
on Visual Studio 2010 framework 4.0 with C#. The overall
system has been developed and implemented with
Microsoft Azure cloud platform.

Figure 4: Computation Overhead

Figure 4 depicts the computation overhead in seconds
based on the number of keywords. In this study, we
compared the performance of our proposed system with the
RSA based system proposed in [15]. Results clearly show
that even for 10 keywords, the overhead computation using
CRSA is low as compared to the RSA based system [15].
For example, RSA based system takes approximately 4.5
seconds for searching 2 keywords, whereas our proposed
CRSA based scheme takes only 4 seconds. The
computation cost for search increases linearly in both
schemes. But from Figure 4 it is evident that our proposed
CRSA based scheme performs better even under increased
number of keywords.

Prasanna B T et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (1) , 2015, 826-832

www.ijcsit.com 831

Figure 5: Time Comparison

 The graph in Figure 5 plotted above makes the
comparison of the search computation time in seconds of
our proposed system against the RSA based system. For
two keywords search, the time taken by the RSA based
scheme is approximately 2.5 seconds, whereas our
proposed system takes approximately 0.5 seconds less. As
the number of keywords increased for search, the
computation time for search also increases linearly in both
schemes. But CRSA based scheme is found to perform
better.

 Thus it is evident that encryption algorithm CRSA with B
 Tree as index tree performs better than RSA and B tree

Combination.

VI CONCLUSION AND FUTURE WORK

This work uses CRSA asymmetric algorithm for
encrypting data files and index tree based on B-tree. CRSA
increases the data security and improves privacy of data by
its commutative nature. Using CRSA, data in a file can be
updated dynamically without affecting the overall
performance of searching on B-tree. In our proposed
system, if encrypted data is modified, re-encrypting for the
whole data is not needed. This is a desirable feature as it
reduces the computation time.

The future work would concentrate on using Elliptic
Curve Cryptography (ECC) encryption technique for better
performance. Further, we intend to analyze the behavior of
our proposed system(s) for multiuser environment.

 REFERENCES

[1] M. Armbrust et al., ‘Above the Clouds: A Berkeley View of Cloud
Computing,’ Feb 2009.

[2] S. Kamara and K. Lauter, ‘Cryptographic cloud storage,’ in RLCPS,
January 2010, LNCS. Springer, Heidelberg.

[3] A. Singhal, ‘Modern information retrieval: A brief overview,’ IEEE
Data Engineering Bulletin, vol. 24, no. 4, pp. 35–43, 2001.

[4] Cloud Security Alliance, ‘Security Guidance for Critical Areas of
Focus in Cloud Computing,’ http://www.cloudsecurityalliance.org,
2009.

[5] R. Brinkman, ‘Searching in encrypted data,’ in University of Twente,
PhD thesis, 2007.

[6] Ning Cao; Cong Wang; Ming Li; Kui Ren; Wenjing Lou, ‘Privacy-
Preserving Multi-Keyword Ranked Search over Encrypted Cloud
Data,’ Parallel and Distributed Systems, IEEE Transactions on ,
vol.25, no.1, pp.222,233, Jan. 2014

[7] Dawn Xiaoding Song; Wagner, D.; Perrig, A., ‘Practical techniques
for searches on encrypted data,’ Security and Privacy, 2000. S&P
2000. Proceedings. 2000 IEEE Symposium on ,doi:
10.1109/SECPRI.2000.848445 vol., no., pp.44,55, 2000

[8] J. Li et al., ‘Fuzzy Keyword Search Over Encrypted Data in Cloud
Computing,’ Proc. IEEE INFOCOM ’10 Mini-Conf., San Diego, CA,
Mar. 2010.

[9] M. Li et al., ‘Authorized Private Keyword Search over Encrypted
Data in Cloud Computing,’ 31st Int’l. Conf. Distributed Computing
Systems, 2011, pp. 383–92.

[10] D. Boneh, G. D. Crescenzo, R. Ostrovsky, and G. Persiano, ‘Public
key encryption with keyword search,’ in Proc. of EUROCRYPT,
2004.

[11] C. Wang et al., ‘Secure Ranked Keyword Search Over Encrypted
Cloud Data,’ Proc. ICDCS ’10, 2010

[12] Wenjun Lu; Varna, A.L.; Min Wu, ‘Confidentiality-Preserving
Image Search: A Comparative Study Between Homomorphic
Encryption and Distance-Preserving Randomization,’ Access, IEEE,
vol.2, no., pp.125,141, 2014

[13] W. K. Wong, D. W. Cheung, B. Kao, and N. Mamoulis, ‘Secure knn
computation on encrypted databases,’ in Proc. of SIGMOD, 2009.

[14] K. Ren, C. Wang, and Q. Wang, ‘Security Challenges for the Public
Cloud,’ IEEE Internet Computing, vol. 16, no. 1, pp. 69-73, 2012.

[15] Zhangjie Fu et al, ‘Multikeyword Ranked Search Supporting
Synonym Query over Encrypted Data in Cloud Computing’, IEEE
Conference, 2013.

[16] R. Curtmola, J. A. Garay, S. Kamara, and R. Ostrovsky,
‘Searchable symmetric encryption: improved definitions and efficient
constructions,’ in ACM CCS, 2006.

[17] P. Naresh, K. Pavan kumar, and D. K. Shareef, ‘Implementation of
Secure Ranked Keyword Search by Using RSSE,’ International
Journal of Engineering Research & Technology (IJERT) ISSN:
2278-0181 Vol. 2 Issue 3, March – 2013.

[18] S.Buyrukbilen and S.Bairas, ‘Privacy preserving ranked search on
public key encrypted data,’ in Proc. IEEE International Conference
on High Performance Computing and Communications (HPCC),
November 2013.

[19] B. H. Bloom, ‘Space/time trade-offs in hash coding with allowable
errors,’ Communications of the ACM, vol. 13, no. 7, 1970, pp. 422–
426.

[20] C. Gentry and Z. Ramzan, ‘Single-database private information
retrieval with constant communication rate,’ in ICALP, pp. 803–
815.2005.

[21] Sun, W., Wang, B., Cao, N., Li, M., Lou, W., Hou, Y.T., Li, H.,
‘Privacy-preserving multikeyword text search in the cloud supporting
similarity-based ranking,’ Proceedings of the 8th ACMSIGSAC
symposium on Information, computer and communications security,
ACM, pp. 71–82.2013.

[22] Prasanna B.T, C.B. Akki, ‘A Survey on Homomorphic and
Searchable Encryption Security Algorithms for Cloud Computing,’
Communicated to International Journal of Information Technology
and Computer Science, November, 2014.

[23]Prasanna B.T, C.B. Akki, ‘A Comparative Study of Homomorphic and
Searchable Encryption Schemes for Cloud Computing,’
Communicated to International Journal of Communication Networks
and Distributed Systems, November, 2014.

[24] Prasanna B.T, C.B. Akki, ‘A Survey on Challenges and Security
Issues in Cloud,’ Presented in conference presented in Conference
on Evolutionary Trends in Information Technology, May 20-22 2011,
at Visvesvaraya Technological University, Belgaum, Karnataka.

Prasanna B T et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (1) , 2015, 826-832

www.ijcsit.com 832

